WTWT Pitch Competition
Jul
11
5:30 PM17:30

WTWT Pitch Competition

Are you looking for a community of like-minded entrepreneurs? Ready to challenge yourself in a meaningful and informative way? Enter your pitch in this women-only event to compete against female founders and entrepreneurs within Volta’s network and the Atlantic Canadian tech community.

View Event →
CIPS-NS Annual General Meeting 2019
Jun
11
5:00 PM17:00

CIPS-NS Annual General Meeting 2019

  • Hotel Halifax, Harbour City Bar & Grill, Private Room (map)
  • Google Calendar ICS

All members (and their guests) are cordially invited to our 2019 Annual General Meeting hosted in the private room at the Harbour City Bar & Grill in Hotel Halifax.

Agenda

  • 5p-6p Networking

  • 6p-7p AGM Business

    • Committee Reports

    • Board Elections

    • ByLaw Amendments

      • Email Proxy Voting (e-Voting) at AGM and SGM

      • ISP Requirements for Officers

      • Quorum Requirements for AGM and SGM

      • Year End

      • Meeting Notification Procedures

  • 7p+ Socialisation

Proposed ByLaw changes and the slate of nominations will be mailed to members prior to the AGM.

Remote attendance will be avaiable with details announced closer to the date.

Food and drinks to be provided.

View Event →
Alumni Days | Edward Snowden: Live from Moscow
May
30
7:20 PM19:20

Alumni Days | Edward Snowden: Live from Moscow

  • McInnes Room, Dalhousie Student Union, Dalhousie University (map)
  • Google Calendar ICS

Our right to privacy is one of the most pressing issues of the 21st century. With international digital security scandals and government surveillance involving Huawei and Facebook  back in the headlines, now more than ever people are asking, “As global citizens, what are our rights and responsibilities when it comes to privacy?”

That’s what will drive the conversation on May 30 when former American intelligence officer and fugitive Edward Snowden speaks (via livestream from Moscow, Russia) at Dal during an exclusive event.

Snowden has become synonymous with the topic, and subsequently one of the most wanted men in America, since his revelations to the media about top-secret U.S. surveillance activities.

In 2013, the former CIA and National Security Agency (NSA) computer programmer leaked top-secret documents to the media that revealed that the U.S. government had been conducting mass internet and telephone surveillance on its citizens, activities that were outside the limits of the U.S. Constitution

But whether you find yourself squarely for or against Snowden’s actions – or somewhere in the middle – the conversation on May 30 is not about Snowden. It’s about our right to privacy as global citizens.

Snowden will serve as the keynote speaker during the Open Dialogue event, which kicks off the inaugural Dalhousie Alumni Days. Open Dialogue aims to bring people together for thought-provoking conversations focused on timely and relevant topics. And one thing is for sure, privacy is a hot, albeit, necessary topic.

View Event →
Creative AI at Samsung Research America: Self-Supervised Learning for Robots and Music
May
21
11:00 AM11:00

Creative AI at Samsung Research America: Self-Supervised Learning for Robots and Music

  • Slonim Room, Goldberg Computer Science Building, Dalhousie University (map)
  • Google Calendar ICS

Samsung Research America’s AI Center is focused on several areas encompassing machine learning, computer vision, and natural language. This talk will describe recent work from the Creative AI lab which focuses on developing the core technology to support applications in creative domains such as music generation. This includes new self-supervised methods for 1) understanding music in a manner that correlates with human perception and 2) enabling an embodied agent to generate action sequences allowing it to achieve a task grounded in music.

View Event →
Crypto 101
May
17
6:00 PM18:00

Crypto 101

  • 1313 Hollis Street Halifax, NS, B3J 1T8 Canada (map)
  • Google Calendar ICS

Atlantic Blockchain Company is hosting their first community event where we will cover an introduction to Cryptocurrency. If you have burning questions about this topic, come out to this event for answers!


A small presentation that covers:

- Various Cryptocurrencies

- What is mining?

- How can you mine?

- How can you get cryptocurrency?


Followed by a peer discussion to dive deeper into crypto topics.

View Event →
Seven Fundamentals for Tech Companies - Staying Ahead of the CRA
May
6
12:00 PM12:00

Seven Fundamentals for Tech Companies - Staying Ahead of the CRA

The technology sector offers many opportunities for startups and foreign investors, especially those that are seeking to leverage the resources, infrastructure, and incentives available here in Canada. Although there are numerous advantages for entrepreneurs and innovation leaders, one can also expect there to be business challenges that come with innovation and rapid growth. In this Lunch + Learn, Martha Oner will share seven finance fundamentals to keep in mind as you grow your business.

Martha Oner, National Research and Development & Government Incentives Leader at Grant Thornton, works with tech companies across the country. She has compiled a list of common issues she sees across the sector that apply to both small and large tech organizations. Martha will discuss her article, Seven fundamentals for tech companies, to help you plan and prepare as you build your business. Whether you are starting a company, setting up an R&D center, or transitioning your company to new ownership, this list will help tech innovators grow their business.

Lunch will be provided.

View Event →
Decoding Human Movement Intention from Wearable Sensors
Feb
28
12:00 PM12:00

Decoding Human Movement Intention from Wearable Sensors

Understanding human movement is essential for the better design of human-machine interface. Researchers have made great efforts to develop cheap and easy-to-use wearable sensors and algorithms to achieve this goal. In this talk, I will present my previous works in this field, including movement intention detection and perception and cognition recognition using bio-signals collected by wearable sensors. First, I will talk about detection of arm and leg movement intention using ForceMyography, ElectroMyography, and Inertial Measurement Units.  The applications of this line of studies are for human-machine interaction, prosthetic limb (robotic arm) control, and rehabilitation and assistive device. Second, I will discuss how to measure visual perception and cognition of surgeons using eye-tracking technology. Results gained can help us to assess mental workloads, team cognition of surgical team, and help to detect the moment of performance difficulty under AR/VR environment.

View Event →
Software Project Management: Myths and Findings
Feb
26
12:00 PM12:00

Software Project Management: Myths and Findings

For decades, our collective view of how software is built was strongly influenced by unscientific, non-empirical "best practices" and experience reports. In recent years, empirical research has invalidated many common beliefs about software development, and generated many new theories, concepts, tools and techniques. In this talk, Dr. Ralph will summarize over a decade of empirical research at the intersection of software engineering and project management, including seminal research on decision-making, waste-reduction, software engineering success, product backlogs, cognitive biases in requirements engineering, and surviving disruption.

View Event →
Interpreting Deep Learning Models (PhD Thesis Proposal)
Feb
14
11:00 AM11:00

Interpreting Deep Learning Models (PhD Thesis Proposal)

  • Dalhousie University, Mona Campell Building, Room 2110 (map)
  • Google Calendar ICS

Abstract:

Model interpretability is a requirement in many applications in which crucial decisions are made by users relying on a model's outputs. The recent movement for ``algorithmic fairness" also  stipulates explainability, and therefore interpretability of learning models. The most notable is ``a right to explanation" enforced in the widely-discussed provision of the European Union General Data Privacy Regulation (GDPR). And yet the most successful contemporary Machine Learning approaches, the Deep Neural Networks, produce models that are highly non-interpretable. Deep Neural Networks have achieved huge success at a wide spectrum of applications from language modeling and computer vision to speech recognition. However, nowadays, good performance alone is not sufficient to satisfy the needs of practical deployment where interpretability is demanded for cases involving ethics and mission critical applications. The complex models of Deep Neural Networks make it hard to understand and 
 reason the predictions, which hinders its further progress.  

In this thesis proposal, we  attempt to address this challenge by presenting two methodologies that demonstrate superior interpretability results on experimental data.  

The first methodology is named as CNN-INTE. It interprets deep Convolutional Neural Networks (CNN) via meta-learning. In this work, we interpret a specific hidden layer of the deep CNN model on the MNIST image dataset. We use a clustering algorithm in a two-level structure to find the meta-level training data and Random Forest as base learning algorithms to generate the meta-level test data. The interpretation results are displayed visually via diagrams, which clearly indicate how a specific test instance is classified. Our method achieves global interpretability for all the test instances on the hidden layers without sacrificing the accuracy obtained by the original deep CNN model. This means our model is faithful to the original deep CNN model, which leads to reliable interpretations.  

In the second methodology, we apply the Knowledge Distillation technique to distill Deep Neural Networks into decision trees in order to attain good performance and interpretability simultaneously. We formulate the problem at hand as a multi-output regression problem and the experiments demonstrate that the student model achieves significantly better accuracy performance (about 1% to 5%) than vanilla decision trees at the same level of tree depth. The experiments are implemented on the TensorFlow platform to make it scalable to big datasets. To the best of our knowledge, we are the first to distill Deep Neural Networks into vanilla decision trees on multi-class datasets.

In the end, we propose a visualization technique for future work.

Examining Committee:

Dr. Stan Matwin - Faculty of Computer Science (Supervisor)
Dr. Thomas Trappenberg - Faculty of Computer Science (Reader)
Dr. Sageev Oore - Faculty of Computer Science (Reader)
Dr.  Fernando Paulovich - Faculty of Computer Science (External Examiner)

View Event →
Panic and Pageantry: Conducting HCI Research at Art Festivals
Jan
30
11:30 AM11:30

Panic and Pageantry: Conducting HCI Research at Art Festivals

  • Dalhousie University, Goldberg Computer Science Building, Slonim Conference Room (#430) (map)
  • Google Calendar ICS

Public art festivals provide a unique opportunity for Human-Computer

Interaction (HCI) research. They attract a diverse population interested

in engaging in novel experiences, foster a lively crowd dynamic, provide

a variety of interesting public settings, and can be a remarkably

efficient means of collecting participant data. Yet pitfalls abound: for

example, the desire to provide a good experience can trump scientific

objectives, onsite testing can be difficult, and small mishaps can have

disastrous consequences for data collection. This talk reviews six

studies conducted at art festivals, highlighting successes and failures

in each, and then offers a set of hard-won recommendations, useful for

researchers who might consider a similar approach: have concrete

research objectives as well as higher level interests, use agile

approaches to system building, balance audience engagement and feature

simplicity, articulate backup plans when things go wrong but remain

nimble, consider research as spectacle.

View Event →
Seafloor habitat mapping in an ocean of big data: Development of data analysis approaches for map production
Jan
15
11:30 AM11:30

Seafloor habitat mapping in an ocean of big data: Development of data analysis approaches for map production

  • Dalhousie University, Goldberg Computer Science Building, CS Auditorium (#127) (map)
  • Google Calendar ICS

Over the past two decades advances in the field of ocean technology have led to the exponential increase in volumes of oceanographic data. Acoustic remote sensing, autonomous surface and underwater platforms, in-situ sensor platforms, and vessel-deployed instruments are now capable of collecting extremely large, diverse and interconnected oceanographic data sets for a wide range of applications. The technology has reached the state where ocean data are being generated at a rate faster than can be assessed and interpreted using traditional methods. The need for development of analytical tools to process these data sets, coupled with the skilled individuals to undertake these analyses is now paramount.

We present case study examples of applied research activities in the field of integrated ocean mapping at the Nova Scotia Community College (NSCC) where analytical procedures are under development to handle, process and deliver results from large oceanographic data sets in support of ocean sector stakeholders. NSCC works closely with regional and Canadian-based companies, federal and provincial government departments, and other academic institutions to provide innovative applied research solutions in the area of ocean technology and ocean analytics. An overview of various habitat mapping approaches will be provided to illustrate advances in this field of research.

View Event →
Machine Learning Techniques for Brain Signal Analysis
Jan
9
1:30 PM13:30

Machine Learning Techniques for Brain Signal Analysis

  • Dalhousie University, Goldberg Computer Science Building, Slonim Conference Room (#430) (map)
  • Google Calendar ICS

The human brain is one of the most complicated biological systems in the world. The brain activities measured by various signals such as electroencephalogram (EEG), electrocorticogram (ECoG), and functional magnetic resonance imaging (fMRI) provide avenues that can help understand the underlying mechanisms of the brain as well as diagnosis brain disorders and the related diseases. However, without the proper techniques to analyze the brain signals, they are of limited value. In this talk, I will discuss the challenges in brain signal analysis and emphasize the role of machine learning techniques in feature extraction and classification of EEG/ECoG signals. From an algorithmic perspective, I will present multitask learning techniques that aim to discover the common structure that is shared across the brain signals from different subjects to improve the learning performances. In addition, I will also discuss some theoretical aspects of multitask learning, and address two fundamental questions: First, compared with single-task learning, why multitask learning can succeed? Second, under what conditions multitask learning can succeed?

View Event →
CIPS-NS Winter Social
Dec
13
6:30 PM18:30

CIPS-NS Winter Social

CIPS NS is having it's winter social, drinks and appetizers to be provided at the Halifax Club.

All CIPS NS members and past members are cordially invited to attend.  This is a very important event for CIPS  as we look to build our community and we look forward to bringing more networking and learning opportunities to our local tech community.

View Event →
#HaliBA Holiday Social
Dec
13
5:30 PM17:30

#HaliBA Holiday Social

  • Harbour City Bar and Grill - Delta Halifax (map)
  • Google Calendar ICS

t is that time of the year to celebrate! The IIBA Halifax Chapter cordially invites you to our annual Holiday Social. Please join the Board of Directors and fellow IIBA members for an evening containing light refreshments, entertaining company and great conversation. Come and enjoy this excellent opportunity to meet and network with our local CBAP certified professionals. This gathering is a special evening to bring existing, old, new and future members together to enjoy the benefits of our local IIBA Chapter. Do not miss this chance to meet colleagues from the Halifax business analysis, management consulting, service management and IT professional communities. Let's celebrate this year's accomplishments and prepare to make new commitments for the coming year. Chapter and non-chapter members are welcome.

Register in advance for complimentary drink ticket:
https://halifax.iiba.org/event/iiba-halifax-chapter-holiday-social-1

View Event →
Declarative Performance: Automating Performance Ops with Kubernetes
Dec
5
5:30 PM17:30

Declarative Performance: Automating Performance Ops with Kubernetes

Declarative Performance: Automating Performance Ops with Kubernetes
Domenic Rosati, Engineering @ Manifold

Performance management is really hard. There are lots of tools that help like APMs and other observability tools. Ensuring your system is highly available. Setting SLOs and observing SLIs.
Kubernetes helps by providing a self healing platform that reconciles current system state with declared ideal state. Is there a way to declare ideal performance and leverage Kubernetes to attempt to meet those objectives automatically?

View Event →
Can data science be ethical? And why should I care? On DNA, Gamergate, taxi rides, and sea rescue operations
Nov
29
11:30 AM11:30

Can data science be ethical? And why should I care? On DNA, Gamergate, taxi rides, and sea rescue operations

  • Dalhousie University, Goldberg Computer Science Building, CS Auditorium (#127) (map)
  • Google Calendar ICS

Ethics is everywhere. We need to get our research plans approved by ethics boards, we now do ethical AI (based on ethics codes), the European Union makes data-science projects have an independent ethics advisor, and management now engages in ethical leadership. 


    Why is this, and what does ethics actually mean in the context of data science? In this talk, I will give a hands-on introduction to important schools of thought and questions from this fascinating subfield of philosophy. The “hands-on” means that we will, interactively, go through a number of real-life case studies from data science, study what values and rights are at stake and how they were and can be disregarded, respected, protected, and questioned.   


    In the second part of the talk, I will focus on a specific application of ethical questioning: the analysis of vehicle/human trajectory data, and a specific value: privacy. I will discuss two recent examples of the analysis of such data – the New York City taxi rides dataset, and the use of data from the maritime Automatic Information System (AIS) for mapping refugee movements on the Mediterranean Sea. The examples will illustrate a feature that engineers often find very difficult to deal with: the tension between allowing for different (and often mutually incompatible) ethical stances on the one hand, and requiring adherence to certain ethical norms that are considered non-negotiable on the other hand. But these examples will also illustrate why we should care, why it is intellectually stimulating to think about ethics, and why doing so requires us to also question ethics or “ethical” codes, boards and advisors, and certainly leaders.

View Event →
Deep Learning for Audio
Nov
27
11:30 AM11:30

Deep Learning for Audio

  • Dalhousie University, Goldberg Computer Science Building, CS Auditorium (#127) (map)
  • Google Calendar ICS

In this talk, I will present two contrasting approaches to building generative models for audio with deep learning techniques:

1) In the TimbreTron system (developed in collaboration with students and faculty at U of Toronto and Vector), we learn to manipulate the timbre of a sound sample from one instrument to match that of another while preserving musical content such as pitch and rhythm. I will describe how we do this by combining a CycleGAN architecture, appropriate spectral representations and a conditional WaveNet synthesizer.

2) In PerformanceRNN (developed in collaboration with researchers at Google, and with subsequent developments in collaboration with undergraduate students at Dalhousie FCS), we work directly with MIDI data rather than raw audio, which allows us to treat music generation as language-modeling problem. We use a conditional LSTM to generate solo piano music based on a dataset of human performances.


I will also provide overviews as needed throughout the talk of concepts related both to audio generation (e.g. "What is MIDI? What are spectral representations?") as well as to deep learning techniques (e.g. "What is CycleGAN?”).

View Event →
Ethical AI: Where is the horizon & how do we get there?
Nov
23
7:30 PM19:30

Ethical AI: Where is the horizon & how do we get there?

  • Dalhousie University, Kenneth C. Rowe Building, Room 1020 (map)
  • Google Calendar ICS

The panel will discuss the ethical challenges arising as artificial intelligence permeates our lives.

Many people believe that we need to open AI code and "training data" in order to be transparent about the important decisions being made when it comes to AI tools today. But, to achieve that level of transparency, we take the risk that these tools will be manipulated or abused.

If machine learning continues to progress, we'll be able to introduce and enforce ethics rules that regulate the development, training and use of AI tools - or, our "electronic children" - and maybe even reinforce these rules. Would these rules be universally accepted by all? Would groups or communities not bound by these rules break them to gain economic or political advantages?

Join us as we embark on this discussion with panelists:

  • Dr. Darren Abramson, Department of Philosophy, Dalhousie University

  • Dr. Fosca Giannotti, Director, Research at the Information Science and Technology Institute “A. Faedo” of the National Research Council, Pisa, Italy

  • Dr. Stan Matwin, Director, Institute for Big Data Analytics, Dalhousie University

View Event →
Reasoning on data and algorithmic bias: explaining the network effect in opinion dynamics and the training data bias in machine learning
Nov
23
2:30 PM14:30

Reasoning on data and algorithmic bias: explaining the network effect in opinion dynamics and the training data bias in machine learning

  • Dalhousie University, Goldberg Computer Science Building, CIBC Auditorium (#127) (map)
  • Google Calendar ICS

Data science is creating novel means to study the complexity of our societies and to measure, understand and predict social phenomena. My seminar gives an overview of recent research at the Knowledge Discovery (KDD) Lab in Pisa within the SoBigData.eu research infrastructure, targeted at explaining the effects of data and algorithmic bias in different domains, using both data-driven and model-driven arguments. 

First, I introduce a model showing how algorithmic bias instilled in an opinion diffusion process artificially yields increased polarisation, fragmentation and instability in a population. Second, I focus on the urgent open challenge of how to construct meaningful explanations of opaque AI/ML black-box decision systems, introducing the local-to-global framework for the explanation of ML classifiers.

The two cases show how the combination of data-driven and model-driven interdisciplinary research has a huge potential to shed new light on complex phenomena like discrimination and polarisation, as well as to explain how decision making black-boxes, both human and artificial, actually work. 

I conclude with an account of the open data science paradigm pursued in SoBigData.eu Research Infrastructure and its importance for interdisciplinary data driven science that impacts societal challenges.

View Event →
Institute for Big Data Analytics Anniversary Celebration
Nov
23
10:00 AM10:00

Institute for Big Data Analytics Anniversary Celebration

  • Dalhousie University, Goldberg Computer Science Building, Atrium (map)
  • Google Calendar ICS

The Institute for Big Data Analytics is turning five. Headquartered at Dalhousie University’s Faculty of Computer Science, the Institute for Big Data Analytics has become an international hub of excellence in big data research – supporting local industry to use big data to make an impact and training the next generation of researchers and practitioners to advance this area of innovation.

As the Institute for Big Data Analytics reaches this milestone, we will acknowledge the progress made in this area for Dalhousie and the region, look back on the research advances made, and look ahead to the next five years. This is an opportunity to not only focus on the direction the Institute for Big Data Analytics will take to align with the university’s and regions’ strategic priorities, but also to discuss the future of big data and the opportunities and challenges we face as a society. 

Join us for speeches, student research poster presentations, and refreshments.

View Event →